1. 前言

随着LLM的发展和应用,在LLM的预训练模型基础上做微调,使其适用于自己的业务场景的研究越来越多。与全参数SFT相比LoRA是在冻结LLM本身参数的基础上,在旁路增加两个可学习的矩阵,用于训练和学习,最后推理是LLM输出和可学习的矩阵的输出相加,得到最终的输出。它与全参数微调方法区别是:

资源上的差异:

  • 全参数微调:需要加载和更新全部LLM参数,需要更高的显存(需要的显存一般是单一参数的4倍),数据量上也需要更多的微调数据;

  • LoRA:只需要加载LLM参数,训练两个可学习的低秩矩阵,显存和数据量要求较低,训练速度也更快;

效果上差异:

  • 全参数微调:存在灾难性遗忘的风险,理论效果上限更高;

  • LoRA:和全参数微调效果差距不大,稳定性和扩展性更好;

2. LoRA原理

LoRA低秩适应微调,该方法的核心思想就是通过低秩分解来模拟参数的改变量,从而以极小的参数量来实现大模型的间接训练。

它的做法是:

1.在原始的Pretrain_LLM旁边增加一个新的通路,通过前后两个矩阵A,B相乘,合并作为输出,即在原始参数 、、 上增加AB矩阵(同一层QKV的AB矩阵参数共享,不同层不共享);

2.第一个矩阵A负责降维,第二个矩阵B负责升维,中间层维度为(),从而来模拟所谓的本征秩(intrinsic rank)。

3.用随机高斯分布初始化,用 0 矩阵初始化,保证训练的开始此旁路矩阵依然是 0 矩阵;

  • • 1.不将AB同时初始化为0,是为了保证训练可以顺利参数更新;

  • • 2.不将AB同时高斯初始化,是为了让模型一开始AB矩阵不起作用,防止一开始 引入噪声;

  • • 3.B高斯分布初始化,A用0初始化可以吗?目前看可以,如果不对请指正;

4.输出结果是两者相加:

3. LoRA的变种

QLoRA

与LoRA相比:LLM模型采用4bit加载,进一步降低训练需要显存。

QLoRA是进一步降低了微调需要的显存,QLoRA是将模型本身用4bit加载,训练时把数值反量化到bf16后进行训练,利用LoRA可以锁定原模型参数不参与训练,只训练少量LoRA参数的特性使得训练所需的显存大大减少。

LoRA+

与LoRA相比:AB矩阵采用不同的学习率;AB矩阵应用到全部参数矩阵。

LoRA+通过为矩阵A和B引入不同的学习率,更有效的训练LoRA适配器。LoRA在训练神经网络时,学习率是应用于所有权重矩阵(包括embeded和normalization层)。而LoRA+的作者可以证明,只有单一的学习率是次优的。将矩阵B的学习率设置为远高于矩阵A的学习率,可以使得训练更加高效。

t是放大因子,。

LoRA-FA

与LoRA相比:仅训练B矩阵。

LoRA-FA是LoRA与Frozen-A的缩写,在LoRA-FA中,矩阵A在初始化后被冻结,矩阵B是在用零初始化之后进行训练(就像在原始LoRA中一样)。这将参数数量减半,同时具有与普通LoRA相当的性能。

LoRA-drop

LoRA矩阵可以添加到神经网络的任何一层,LoRA-drop则引入了一种算法来决定哪些层由LoRA微调,哪些层不需要

LoRA-drop步骤:

  • • 1.对数据的一个子集进行采样,训练LoRA进行几次迭代;

  • • 2.将每个LoRA适配器的重要性计算为BAx,其中A和B是LoRA矩阵,x是输入;

  • • 3.如果这个输出很大,说明它会更剧烈地改变行为,如果它很小,这表明LoRA对冻结层的影响很小可以忽略;

  • • 4.可以汇总重要性值,直到达到一个阈值(这是由一个超参数控制的),或者只取最重要的n个固定n的LoRA层;

  • • 5.最后在整个数据集上进行完整的训练,其他层固定为一组共享参数,在训练期间不会再更改。

LoRA-drop算法允许只使用LoRA层的一个子集来训练模型。根据作者提出的证据表明,与训练所有的LoRA层相比,准确度只有微小的变化,但由于必须训练的参数数量较少,因此减少了计算时间。

AdaLoRA

在LoRA-drop中作者根据LoRA适配器的重要程度,选择部分不重要的LoRA不参与训练。而AdaLoRA作者则是根据重要程度,选择不同LoRA适配器调整秩的大小(原始LoRA所有层秩都一样)。另外AdaLoRA是根据LoRA矩阵的奇异值作为重要程度指标的。

AdaLoRA与相同秩的标准LoRA相比,两种方法总共有相同数量的参数,但这些参数的分布不同。在LoRA中,所有矩阵的秩都是相同的,而在AdaLoRA中,有的矩阵的秩高一些,有的矩阵的秩低一些,所以最终的参数总数是相同的。经过实验表明AdaLoRA比标准的LoRA方法产生更好的结果,这表明在模型的部分上有更好的可训练参数分布,这对给定的任务特别重要。

DoRA

通常认为LoRA等微调技术不如正常微调(Finetune)的原因是,LoRA被认为是对Finetune微调的一种低秩近似,通过增加Rank,LoRA可以达到类似Finetune的微调效果。但是作者发现LoRA的学习模式和FT很不一样,更偏向于强的正相关性,即方向和幅度呈很强的正相关,这可能对更精细的学习有害。

图中x轴是模型更新方向,y轴是幅度变化,图中的散点是每一层。可以看到FT的训练方式,更新的方向和幅度并没有太大关系(或者小的负相关),而LoRA存在较强的正相关性。

哪一种方向和幅度相关性更好?

这个不确定,但是LoRA的目的是利用较小参数达到和FT一致的效果,所以从相关性上应该LoRA的应该更像FT。所以作者将预训练参数矩阵进行分解,分解成包括大小(magnitude)和方向(directional)两个向量,只在方向上应用LoRA微调

DoRA的作者通过将预训练矩阵W分解,得到大小为1 x d的大小向量m和方向矩阵V,从而独立训练大小和方向。然后方向矩阵V通过B* A增强(LoRA),然后m按原样训练。虽然LoRA倾向于同时改变幅度和方向(正如这两者之间高度正相关所表明的那样),DoRA可以更容易地将二者分开调整,或者用另一个的负变化来补偿一个的变化。所以可以DoRA的方向和大小之间的关系更像微调。代码如下

import torch.optim as optim   from torch.utils.data import DataLoader, TensorDataset   import torch   import torch.nn as nn   import torch.nn.functional as F         # This layer is dropped into your pre-trained PyTorch model where nn.Linear is used   class DoRALayer(nn.Module):       def __init__(self, d_in, d_out, rank=4, weight=None, bias=None):           super().__init__()              if weight is not None:               self.weight = nn.Parameter(weight, requires_grad=False)           else:               self.weight = nn.Parameter(torch.Tensor(d_out, d_in), requires_grad=False)              if bias is not None:               self.bias = nn.Parameter(bias, requires_grad=False)           else:               self.bias = nn.Parameter(torch.Tensor(d_out), requires_grad=False)              # m = Magnitude column-wise across output dimension           self.m = nn.Parameter(self.weight.norm(p=2, dim=0, keepdim=True))                      std_dev = 1 / torch.sqrt(torch.tensor(rank).float())           self.lora_A = nn.Parameter(torch.randn(d_out, rank)*std_dev)           self.lora_B = nn.Parameter(torch.zeros(rank, d_in))          def forward(self, x):           lora = torch.matmul(self.lora_A, self.lora_B)           adapted = self.weight + lora           column_norm = adapted.norm(p=2, dim=0, keepdim=True)           norm_adapted = adapted / column_norm           calc_weights = self.m * norm_adapted           return F.linear(x, calc_weights, self.bias)

LongLoRA

LongLoRA 是港中文和 MIT 在 23 年发表的一篇 paper,主要是为了解决长上下文的注意力机制计算量很大的问题。

LLM支持长文本的方法,包括利用NTK等方式进行外推和内插(可参考:位置编码(下)[1],但为了让模型表现更好,一般还会进行微调。LongLoRA的要点:

  • • 1.S2-attn注意力:这一点与LoRA无关,是为解决长序列注意力成二次方增加的问题,S2-attn在训练时不计算全局的注意力,而是将所有token分组,每个token只计算该组和相邻组的注意力,降低显存消耗,提升训练速度。(和longformer、Big Bird等处理长文本注意力方法没有太大区别,都是只算该token附近的注意力);

  • • 2.LoRA训练(变种):在潜入层、归一化层也都加入了LoRA权重进行训练;

总结

LoRA系列大模型微调方法是大模型PEFT非常重要的一个研究方向,也是目前工程届应用最广法的微调方法之一,基于LoRA的改进的论文和方法还在不断更新。

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

Logo

欢迎加入 MCP 技术社区!与志同道合者携手前行,一同解锁 MCP 技术的无限可能!

更多推荐