如何在langchain中对大模型的输出进行格式化
如何在langchain中对大模型的输出进行格式化
简介
我们知道在大语言模型中, 不管模型的能力有多强大,他的输入和输出基本上都是文本格式的,文本格式的输入输出虽然对人来说非常的友好,但是如果我们想要进行一些结构化处理的话还是会有一点点的不方便。
不用担心,langchain已经为我们想到了这个问题,并且提出了完满的解决方案。
langchain中的output parsers
langchain中所有的output parsers都是继承自BaseOutputParser。这个基础类提供了对LLM大模型输出的格式化方法,是一个优秀的工具类。
我们先来看下他的实现:
class BaseOutputParser(BaseModel, ABC, Generic[T]):
@abstractmethod
def parse(self, text: str) -> T:
"""Parse the output of an LLM call.
A method which takes in a string (assumed output of a language model )
and parses it into some structure.
Args:
text: output of language model
Returns:
structured output
"""
def parse_with_prompt(self, completion: str, prompt: PromptValue) -> Any:
"""Optional method to parse the output of an LLM call with a prompt.
The prompt is largely provided in the event the OutputParser wants
to retry or fix the output in some way, and needs information from
the prompt to do so.
Args:
completion: output of language model
prompt: prompt value
Returns:
structured output
"""
return self.parse(completion)
def get_format_instructions(self) -> str:
"""Instructions on how the LLM output should be formatted."""
raise NotImplementedError
@property
def _type(self) -> str:
"""Return the type key."""
raise NotImplementedError(
f"_type property is not implemented in class {self.__class__.__name__}."
" This is required for serialization."
)
def dict(self, **kwargs: Any) -> Dict:
"""Return dictionary representation of output parser."""
output_parser_dict = super().dict()
output_parser_dict["_type"] = self._type
return output_parser_dict
BaseOutputParser 是一个基础的类,可能被其他特定的输出解析器继承,以实现特定语言模型的输出解析。
这个类使用了Python的ABC模块,表明它是一个抽象基类(Abstract Base Class),不能被直接实例化,而是需要子类继承并实现抽象方法。
Generic[T] 表示这个类是一个泛型类,其中T 是一个类型变量,它表示解析后的输出数据的类型。
@abstractmethod 装饰器标记了 parse 方法,说明它是一个抽象方法,必须在子类中实现。parse 方法接受一个字符串参数 text,通常是语言模型的输出文本,然后将其解析成特定的数据结构,并返回。
parse_with_prompt 方法也是一个抽象方法,接受两个参数,completion 是语言模型的输出,prompt 是与输出相关的提示信息。这个方法是可选的,可以用于在需要时解析输出,可能根据提示信息来调整输出。
get_format_instructions 方法返回关于如何格式化语言模型输出的说明。这个方法可以用于提供解析后数据的格式化信息。
_type 是一个属性,可能用于标识这个解析器的类型,用于后续的序列化或其他操作。
dict 方法返回一个包含输出解析器信息的字典,这个字典可以用于序列化或其他操作。
其中子类必须要实现的方法就是parse。其他的都做为辅助作用。
langchain中有哪些Output Parser
那么langchain中有哪些Output Parser的具体实现呢?具体对应我们应用中的什么场景呢?
接下来我们将会一一道来。
List parser
ListOutputParser的作用就是把LLM的输出转成一个list。ListOutputParser也是一个基类,我们具体使用的是他的子类:CommaSeparatedListOutputParser。
看一下他的parse方法:
def parse(self, text: str) -> List[str]:
"""Parse the output of an LLM call."""
return text.strip().split(", ")
还有一个get_format_instructions:
def get_format_instructions(self) -> str:
return (
"Your response should be a list of comma separated values, "
"eg: `foo, bar, baz`"
)
get_format_instructions是告诉LLM以什么样的格式进行数据的返回。
就是把LLM的输出用逗号进行分割。
下面是一个基本的使用例子:
output_parser = CommaSeparatedListOutputParser()
format_instructions = output_parser.get_format_instructions()
prompt = PromptTemplate(
template="列出几种{subject}.\n{format_instructions}",
input_variables=["subject"],
partial_variables={"format_instructions": format_instructions}
)
_input = prompt.format(subject="水果")
output = model(_input)
print(output)
print(output_parser.parse(output))
我们可以得到下面的输出:
Apple, Orange, Banana, Grape, Watermelon, Strawberry, Pineapple, Peach, Mango, Cherry
['Apple', 'Orange', 'Banana', 'Grape', 'Watermelon', 'Strawberry', 'Pineapple', 'Peach', 'Mango', 'Cherry']
看到这里,大家可能有疑问了, 为什么我们问的是中文,返回的却是因为呢?
这是因为output_parser.get_format_instructions就是用英文描述的,所以LLM会自然的用英文来回答。
别急,我们可以稍微修改下运行代码,如下:
output_parser = CommaSeparatedListOutputParser()
format_instructions = output_parser.get_format_instructions()
prompt = PromptTemplate(
template="列出几种{subject}.\n{format_instructions}",
input_variables=["subject"],
partial_variables={"format_instructions": format_instructions + "用中文回答"}
)
_input = prompt.format(subject="水果")
output = model(_input)
print(output)
print(output_parser.parse(output))
我们在format_instructions之后,提示LLM需要用中文来回答问题。这样我们就可以得到下面的结果:
苹果,橘子,香蕉,梨,葡萄,芒果,柠檬,桃
['苹果,橘子,香蕉,梨,葡萄,芒果,柠檬,桃']
是不是很棒?
Datetime parser
DatetimeOutputParser用来将LLM的输出进行时间的格式化。
class DatetimeOutputParser(BaseOutputParser[datetime]):
format: str = "%Y-%m-%dT%H:%M:%S.%fZ"
def get_format_instructions(self) -> str:
examples = comma_list(_generate_random_datetime_strings(self.format))
return f"""Write a datetime string that matches the
following pattern: "{self.format}". Examples: {examples}"""
def parse(self, response: str) -> datetime:
try:
return datetime.strptime(response.strip(), self.format)
except ValueError as e:
raise OutputParserException(
f"Could not parse datetime string: {response}"
) from e
@property
def _type(self) -> str:
return "datetime"
在get_format_instructions中,他告诉LLM返回的结果是一个日期的字符串。
然后在parse方法中对这个LLM的输出进行格式化,最后返回datetime。
我们看下具体的应用:
output_parser = DatetimeOutputParser()
template = """回答下面问题:
{question}
{format_instructions}"""
prompt = PromptTemplate.from_template(
template,
partial_variables={"format_instructions": output_parser.get_format_instructions()},
)
chain = LLMChain(prompt=prompt, llm=model)
output = chain.run("中华人民共和国是什么时候成立的?")
print(output)
print(output_parser.parse(output))
1949-10-01T00:00:00.000000Z
1949-10-01 00:00:00
回答的还不错,给他点个赞。
Enum parser
如果你有枚举的类型,那么可以尝试使用EnumOutputParser.
EnumOutputParser的构造函数需要传入一个Enum,我们主要看下他的两个方法:
@property
def _valid_values(self) -> List[str]:
return [e.value for e in self.enum]
def parse(self, response: str) -> Any:
try:
return self.enum(response.strip())
except ValueError:
raise OutputParserException(
f"Response '{response}' is not one of the "
f"expected values: {self._valid_values}"
)
def get_format_instructions(self) -> str:
return f"Select one of the following options: {', '.join(self._valid_values)}"
parse方法接收一个字符串 response,尝试将其解析为枚举类型的一个成员。如果解析成功,它会返回该枚举成员;如果解析失败,它会抛出一个 OutputParserException 异常,异常信息中包含了所有有效值的列表。
get_format_instructions告诉LLM需要从Enum的有效value中选择一个输出。这样parse才能接受到正确的输入值。
具体使用的例子可以参考前面两个parser的用法。篇幅起见,这里就不列了。
Pydantic (JSON) parser
JSON可能是我们在日常代码中最常用的数据结构了,这个数据结构很重要。
在langchain中,提供的JSON parser叫做:PydanticOutputParser。
既然要进行JSON转换,必须得先定义一个JSON的类型对象,然后告诉LLM将文本输出转换成JSON格式,最后调用parse方法把json字符串转换成JSON对象。
我们来看一个例子:
class Student(BaseModel):
name: str = Field(description="学生的姓名")
age: str = Field(description="学生的年龄")
student_query = "告诉我一个学生的信息"
parser = PydanticOutputParser(pydantic_object=Student)
prompt = PromptTemplate(
template="回答下面问题.\n{format_instructions}\n{query}\n",
input_variables=["query"],
partial_variables={"format_instructions": parser.get_format_instructions()+"用中文回答"},
)
_input = prompt.format_prompt(query=student_query)
output = model(_input.to_string())
print(output)
print(parser.parse(output))
这里我们定义了一个Student的结构体,然后让LLM给我一个学生的信息,并用json的格式进行返回。
之后我们使用parser.parse来解析这个json,生成最后的Student信息。
我们可以得到下面的输出:
示例输出:{"name": "张三", "age": "18"}
name='张三' age='18'
Structured output parser
虽然PydanticOutputParser非常强大, 但是有时候我们只是需要一些简单的结构输出,那么可以考虑StructuredOutputParser.
我们看一个具体的例子:
response_schemas = [
ResponseSchema(name="name", description="学生的姓名"),
ResponseSchema(name="age", description="学生的年龄")
]
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)
format_instructions = output_parser.get_format_instructions()
prompt = PromptTemplate(
template="回答下面问题.\n{format_instructions}\n{question}",
input_variables=["question"],
partial_variables={"format_instructions": format_instructions}
)
_input = prompt.format_prompt(question="给我一个女孩的名字?")
output = model(_input.to_string())
print(output)
print(output_parser.parse(output))
这个例子是上面的PydanticOutputParser的改写,但是更加简单。
我们可以得到下面的结果:
` ` `json
{
"name": "Jane",
"age": "18"
}
` ` `
{'name': 'Jane', 'age': '18'}
output返回的是一个markdown格式的json字符串,然后通过output_parser.parse得到最后的json。
其他的一些parser
除了json,xml格式也是比较常用的格式,langchain中提供的XML parser叫做XMLOutputParser。
另外,如果我们在使用parser的过程中出现了格式问题,langchain还贴心的提供了一个OutputFixingParser。也就是说当第一个parser报错的时候,或者说不能解析LLM输出的时候,就会换成OutputFixingParser来尝试修正格式问题:
from langchain.output_parsers import OutputFixingParser
new_parser = OutputFixingParser.from_llm(parser=parser, llm=ChatOpenAI())
new_parser.parse(misformatted)
如果错误不是因为格式引起的,那么langchain还提供了一个RetryOutputParser,来尝试重试:
from langchain.output_parsers import RetryWithErrorOutputParser
retry_parser = RetryWithErrorOutputParser.from_llm(
parser=parser, llm=OpenAI(temperature=0)
)
retry_parser.parse_with_prompt(bad_response, prompt_value)
这几个parser都非常有用,大家可以自行尝试。
总结
虽然langchain中的有些parser我们可以自行借助python语言的各种工具来实现。但是有一些parser实际上是要结合LLM一起来使用的,比如OutputFixingParser和RetryOutputParser。
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
全套 《LLM大模型入门+进阶学习资源包》↓↓↓ 获取~
更多推荐
所有评论(0)