前言

最近,AI 圈被三个词刷屏了 ——MCP、RAG、Agent!几乎每天都有新的相关工具冒出来,各大技术论坛、行业群聊得热火朝天。但不少朋友一看到这些术语就犯迷糊:它们到底是啥?能干啥?和我们普通人又有啥关系?别慌!今天就用最接地气的方式,带你彻底搞懂这些概念,看完秒变 AI 达人!

01

MCP:AI界的 “万能转换器”

图片

MCP 其实是个 “多面手”,不过我们重点关注模型上下文协议(Model Context Protocol),它就像 AI 世界的 “万能转换器”。想象一下,你家里有各种不同插头的电器,想插到插座上得配不同转接头,麻烦又混乱。在 AI 领域,过去大模型想调用文件、数据库、聊天软件等工具,也得单独开发接口,效率极低。

而 MCP 就像一个 “超级转接头”,把所有外部工具的接口统一标准。比如你想让 AI 分析 Excel 表格数据,不用手动复制粘贴,MCP 直接帮 AI “连接” 表格,还能调用浏览器查资料、发邮件,就像给 AI 装了一个 “智能中枢”,让它能轻松玩转各种工具!

相比之前的 function call(模型调用外部工具的能力),MCP 就像 “公共交通”,所有人都能坐;function call 更像 “专车”,只服务特定模型。MCP 通过统一标准,打破了工具调用的壁垒,让 AI 能更高效地完成复杂任务。

02

RAG:给AI装上 “知识大脑”

图片

RAG,全称检索增强生成,解决的是 AI 的 “胡说八道” 问题 —— 也就是大家常说的 “幻觉”。想象你问 AI “如何治疗感冒”,如果它没有参考依据,可能给出错误建议。而 RAG 就像给 AI 配了一个 “知识管家”,让它先从海量知识库(企业文档、医学指南、市场报告等)里找答案,再结合问题生成回答。

具体流程很简单:用户提问 → RAG 把问题变成 “关键词密码”,在知识库搜索匹配内容 → 整合这些内容后,再 “喂” 给大模型生成最终答案。这就像写论文时,先查文献找资料,再总结提炼,保证输出内容既专业又靠谱!

RAG 的应用场景超广泛:

智能客服

自动调取产品手册,精准解答客户问题;

企业办公

员工一句话就能查到内部技术文档;

医疗金融

医生参考最新病例、分析师结合市场数据,做出更科学的决策。

03

Agent:主动干活的“小助理”

图片

Agent(智能体)是这三者中最 “聪明” 的存在,它就像一个 24 小时在线的智能助理。普通 AI 只能被动等你提问,而 Agent 能主动理解任务,拆解步骤,调用工具完成目标。

比如你说 “做一份下周的旅行攻略”,Agent 会自动规划:先查目的地天气(调用天气 API)→ 搜索热门景点(调用搜索引擎)→ 对比机票酒店价格(调用预订平台)→ 最后整理成攻略发给你。它不仅能执行任务,还能像人类一样思考优先级,灵活调整流程。

它们如何 “组队放大招”

这三者可不是各自为战,而是紧密协作,形成 AI 界的 “黄金三角”:

MCP + RAG:MCP 帮 RAG 快速调取知识库,RAG 为 MCP 提供实时数据支持。比如在电商场景中,MCP 调用库存 API 获取数据,RAG 分析历史销售记录,共同为商家提供精准的补货建议。

MCP + Agent:MCP 是 “基础设施”,Agent 是 “指挥官”。Agent 通过 MCP 调用各种工具,就像导演指挥演员完成一场演出。比如自动化办公中,Agent 通过 MCP 发送邮件、处理表格,轻松搞定繁琐工作。

生活场景举例

图片

想象一个智能家庭场景:你对 AI 说 “准备晚餐并打扫客厅”。

Agent立刻启动,像管家一样安排任务:先检查冰箱食材(调用智能家居系统)→ 规划菜谱(调用美食数据库)→ 通知扫地机器人打扫(调用设备控制接口);

MCP就像家里的 “智能电网”,把冰箱、扫地机器人、数据库等所有设备和信息源连接起来,让 Agent 能顺畅调用;

RAG则负责提供知识支持,比如推荐符合食材的菜谱,或是给出清洁小妙招。

最终,AI 帮你高效完成任务,真正实现 “动口不动手”!

MCP、RAG、Agent 的组合

正在让 AI 进化为 “智能助手”。

未来,它们可能渗透到生活每个角落

掌握这些概念,

不仅能让你跟上 AI 时代的步伐,

更能提前看到未来生活的模样!

如何学习大模型 AI ?

我国在AI大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着Al技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国Al产业的创新步伐。加强人才培养,优化教育体系,国际合作并进,是破解困局、推动AI发展的关键。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

2025最新大模型学习路线

明确的学习路线至关重要。它能指引新人起点、规划学习顺序、明确核心知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。

对于从来没有接触过AI大模型的同学,我帮大家准备了从零基础到精通学习成长路线图以及学习规划。可以说是最科学最系统的学习路线。

在这里插入图片描述

针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。

大模型经典PDF书籍

新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路!

在这里插入图片描述

配套大模型项目实战

所有视频教程所涉及的实战项目和项目源码等
在这里插入图片描述

博主介绍+AI项目案例集锦

MoPaaS专注于Al技术能力建设与应用场景开发,与智学优课联合孵化,培养适合未来发展需求的技术性人才和应用型领袖。

在这里插入图片描述

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

为什么要学习大模型?

2025人工智能大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

在这里插入图片描述

适合人群

  • 在校学生:包括专科、本科、硕士和博士研究生。学生应具备扎实的编程基础和一定的数学基础,有志于深入AGI大模型行业,希望开展相关的研究和开发工作。
  • IT行业从业人员:包括在职或失业者,涵盖开发、测试、运维、产品经理等职务。拥有一定的IT从业经验,至少1年以上的编程工作经验,对大模型技术感兴趣或有业务需求,希望通过课程提升自身在IT领域的竞争力。
  • IT管理及技术研究领域人员:包括技术经理、技术负责人、CTO、架构师、研究员等角色。这些人员需要跟随技术发展趋势,主导技术创新,推动大模型技术在企业业务中的应用与改造。
  • 传统AI从业人员:包括算法工程师、机器视觉工程师、深度学习工程师等。这些AI技术人才原先从事机器视觉、自然语言处理、推荐系统等领域工作,现需要快速补充大模型技术能力,获得大模型训练微调的实操技能,以适应新的技术发展趋势。
    在这里插入图片描述

课程精彩瞬间

大模型核心原理与Prompt:掌握大语言模型的核心知识,了解行业应用与趋势;熟练Python编程,提升提示工程技能,为Al应用开发打下坚实基础。

在这里插入图片描述

RAG应用开发工程:掌握RAG应用开发全流程,理解前沿技术,提升商业化分析与优化能力,通过实战项目加深理解与应用。 在这里插入图片描述

Agent应用架构进阶实践:掌握大模型Agent技术的核心原理与实践应用,能够独立完成Agent系统的设计与开发,提升多智能体协同与复杂任务处理的能力,为AI产品的创新与优化提供有力支持。
在这里插入图片描述

模型微调与私有化大模型:掌握大模型微调与私有化部署技能,提升模型优化与部署能力,为大模型项目落地打下坚实基础。 在这里插入图片描述

顶尖师资,深耕AI大模型前沿技术

实战专家亲授,让你少走弯路
在这里插入图片描述

一对一学习规划,职业生涯指导

  • 真实商业项目实训
  • 大厂绿色直通车

人才库优秀学员参与真实商业项目实训

以商业交付标准作为学习标准,具备真实大模型项目实践操作经验可写入简历,支持项目背调

在这里插入图片描述
大厂绿色直通车,冲击行业高薪岗位
在这里插入图片描述

文中涉及到的完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

Logo

欢迎加入 MCP 技术社区!与志同道合者携手前行,一同解锁 MCP 技术的无限可能!

更多推荐