python异步调用大模型,实现语音电话功能
首先定义一个websocket接口再定义接口数据帧交互格式数据帧格式data = {"audio": [str], #base64编码后的音频数据切片"session_id": [str], #会话_id"encoding": [str] #压缩类型,暂时只有raw},"is_close":[bool] #当准备结束连接时发送True,正常连接时为False数据帧示例},返回说明返回有两种形式,一
·
python异步调用大模型,实现语音电话功能
本文使用fastapi框架,异步传入用户语音输入,并流式返回大模型输出,实现语音电话的功能
接口定义
首先定义一个websocket接口
@router.websocket("/chat/voice_call")
async def voice_chat(ws: WebSocket,db=Depends(get_db), redis=Depends(get_redis)):
await ws.accept()
await voice_call_handler(ws,db,redis)
再定义接口数据帧交互格式
- 数据帧格式
data = {
"audio": [str], #base64编码后的音频数据切片
"meta_info": {
"session_id": [str], #会话_id
"encoding": [str] #压缩类型,暂时只有raw
},
"is_close":[bool] #当准备结束连接时发送True,正常连接时为False
}
- 数据帧示例
ws_data = {
"audio" : "/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...",
"meta_info":{
"session_id":"28445e6d-e8c1-46a6-b980-fbf39b918def",
"encoding": 'raw'
},
"is_close" : False
}
- 返回说明
返回有两种形式,一种是返回文本信息,一种是返回二进制流音频信息
- 文本信息
参数名称 | 参数类型 | 参数说明 |
---|---|---|
type | string | 说明返回帧类型,仅有类型,“error”,表示出现error |
code | int | 200为正常返回,500为异常返回 |
msg | string | 返回帧的信息 |
- 错误帧示例
{"type": "error", "code": 500, "msg": "wrong frame"}
整体思路
工具函数
#获取session内容
def get_session_content(session_id,redis,db):
session_content_str = ""
if redis.exists(session_id):
session_content_str = redis.get(session_id)
else:
session_db = db.query(Session).filter(Session.id == session_id).first()
if not session_db:
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail="Session not found")
session_content_str = session_db.content
return json.loads(session_content_str)
#解析大模型流式返回内容
def parseChunkDelta(chunk):
decoded_data = chunk.decode('utf-8')
parsed_data = json.loads(decoded_data[6:])
if 'delta' in parsed_data['choices'][0]:
delta_content = parsed_data['choices'][0]['delta']
return delta_content['content']
else:
return ""
#断句函数
def split_string_with_punctuation(current_sentence,text,is_first):
result = []
for char in text:
current_sentence += char
if is_first and char in ',.?!,。?!':
result.append(current_sentence)
current_sentence = ''
is_first = False
elif char in '。?!':
result.append(current_sentence)
current_sentence = ''
return result, current_sentence, is_first
#vad预处理,语音活性检测数据必须为1280长度的字符串
def vad_preprocess(audio):
if len(audio)<1280:
return ('A'*1280)
return audio[:1280],audio[1280:]
VAD类
import webrtcvad
import base64
class VAD():
def __init__(self, vad_sensitivity=1, frame_duration=30, vad_buffer_size=7, min_act_time=1, RATE=16000,**kwargs):
self.RATE = RATE
self.vad = webrtcvad.Vad(vad_sensitivity)
self.vad_buffer_size = vad_buffer_size
self.vad_chunk_size = int(self.RATE * frame_duration / 1000)
self.min_act_time = min_act_time # 最小活动时间,单位秒
def is_speech(self,data):
byte_data = base64.b64decode(data)
return self.vad.is_speech(byte_data, self.RATE)
创建异步队列、异步事件以及future
audio_q = asyncio.Queue() #音频队列
asr_result_q = asyncio.Queue() #语音识别结果队列
llm_response_q = asyncio.Queue() #大模型返回队列
split_result_q = asyncio.Queue() #断句结果队列
input_finished_event = asyncio.Event() #用户输入结束事件
asr_finished_event = asyncio.Event() #语音识别结束事件
llm_finished_event = asyncio.Event() #大模型结束事件
split_finished_event = asyncio.Event() #断句结束事件
voice_call_end_event = asyncio.Event() #语音电话终止事件
future = asyncio.Future() #用于获取传输的session_id
用户输入处理函数
async def voice_call_audio_producer(ws,audio_queue,future,input_finished_event):
logger.debug("音频数据生产函数启动")
is_future_done = False
audio_data = ""
try:
while not input_finished_event.is_set():
voice_call_data_json = json.loads(await ws.receive_text())
if not is_future_done: #在第一次循环中读取session_id
future.set_result(voice_call_data_json['meta_info']['session_id'])
is_future_done = True
if voice_call_data_json["is_close"]:
input_finished_event.set()
break
else:
audio_data += voice_call_data_json["audio"]
while len(audio_data) > 1280:
vad_frame,audio_data = vad_preprocess(audio_data)
await audio_queue.put(vad_frame) #将音频数据存入audio_q
except KeyError as ke:
logger.info(f"收到心跳包")
语音识别函数
async def voice_call_audio_consumer(audio_q,asr_result_q,input_finished_event,asr_finished_event):
logger.debug("音频数据消费者函数启动")
vad = VAD()
current_message = ""
vad_count = 0
while not (input_finished_event.is_set() and audio_q.empty()):
audio_data = await audio_q.get()
if vad.is_speech(audio_data):
if vad_count > 0:
vad_count -= 1
asr_result = asr.streaming_recognize(audio_data)
current_message += ''.join(asr_result['text'])
else:
vad_count += 1
if vad_count >= 25: #连续25帧没有语音,则认为说完了
asr_result = asr.streaming_recognize(audio_data, is_end=True)
if current_message:
logger.debug(f"检测到静默,用户输入为:{current_message}")
await asr_result_q.put(current_message)
current_message = ""
vad_count = 0
asr_finished_event.set()
大模型调用函数
async def voice_call_llm_handler(session_id,llm_info,redis,db,asr_result_q,llm_response_q,asr_finished_event,llm_finished_event):
logger.debug("asr结果消费以及llm返回生产函数启动")
while not (asr_finished_event.is_set() and asr_result_q.empty()):
session_content = get_session_content(session_id,redis,db)
messages = json.loads(session_content["messages"])
current_message = await asr_result_q.get()
messages.append({'role': 'user', "content": current_message})
payload = json.dumps({
"model": llm_info["model"],
"stream": True,
"messages": messages,
"max_tokens":10000,
"temperature": llm_info["temperature"],
"top_p": llm_info["top_p"]
})
headers = {
'Authorization': f"Bearer {Config.MINIMAX_LLM.API_KEY}",
'Content-Type': 'application/json'
}
response = requests.request("POST", Config.MINIMAX_LLM.URL, headers=headers, data=payload, stream=True)
if response.status_code == 200:
for chunk in response.iter_lines():
if chunk:
chunk_data =parseChunkDelta(chunk)
llm_frame = {'message':chunk_data,'is_end':False}
await llm_response_q.put(llm_frame)
llm_frame = {'message':"",'is_end':True}
await llm_response_q.put(llm_frame)
llm_finished_event.set()
断句函数
async def voice_call_tts_handler(ws,tts_info,split_result_q,split_finished_event,voice_call_end_event):
logger.debug("语音合成及返回函数启动")
while not (split_finished_event.is_set() and split_result_q.empty()):
sentence = await split_result_q.get()
sr,audio = tts.synthesize(sentence, tts_info["language"], tts_info["speaker_id"], tts_info["noise_scale"], tts_info["noise_scale_w"], tts_info["length_scale"], return_bytes=True)
text_response = {"type": "text", "code": 200, "msg": sentence}
await ws.send_bytes(audio) #返回音频二进制流数据
await ws.send_text(json.dumps(text_response, ensure_ascii=False)) #返回文本数据
logger.debug(f"websocket返回:{sentence}")
asyncio.sleep(0.5)
await ws.close()
voice_call_end_event.set()
语音合成函数
async def voice_call_tts_handler(ws,tts_info,split_result_q,split_finished_event,voice_call_end_event):
logger.debug("语音合成及返回函数启动")
while not (split_finished_event.is_set() and split_result_q.empty()):
sentence = await split_result_q.get()
sr,audio = tts.synthesize(sentence, tts_info["language"], tts_info["speaker_id"], tts_info["noise_scale"], tts_info["noise_scale_w"], tts_info["length_scale"], return_bytes=True)
text_response = {"type": "text", "code": 200, "msg": sentence}
await ws.send_bytes(audio) #返回音频二进制流数据
await ws.send_text(json.dumps(text_response, ensure_ascii=False)) #返回文本数据
logger.debug(f"websocket返回:{sentence}")
asyncio.sleep(0.5)
await ws.close()
voice_call_end_event.set()
语音电话处理函数
async def voice_call_handler(ws, db, redis):
logger.debug("voice_call websocket 连接建立")
audio_q = asyncio.Queue() #音频队列
asr_result_q = asyncio.Queue() #语音识别结果队列
llm_response_q = asyncio.Queue() #大模型返回队列
split_result_q = asyncio.Queue() #断句结果队列
input_finished_event = asyncio.Event() #用户输入结束事件
asr_finished_event = asyncio.Event() #语音识别结束事件
llm_finished_event = asyncio.Event() #大模型结束事件
split_finished_event = asyncio.Event() #断句结束事件
voice_call_end_event = asyncio.Event() #语音电话终止事件
future = asyncio.Future() #用于获取传输的session_id
asyncio.create_task(voice_call_audio_producer(ws,audio_q,future,input_finished_event)) #创建音频数据生产者
asyncio.create_task(voice_call_audio_consumer(audio_q,asr_result_q,input_finished_event,asr_finished_event)) #创建音频数据消费者
#获取session内容
session_id = await future #获取session_id
tts_info = json.loads(get_session_content(session_id,redis,db)["tts_info"])
llm_info = json.loads(get_session_content(session_id,redis,db)["llm_info"])
asyncio.create_task(voice_call_llm_handler(session_id,llm_info,redis,db,asr_result_q,llm_response_q,asr_finished_event,llm_finished_event)) #创建llm处理者
asyncio.create_task(voice_call_llm_response_consumer(session_id,redis,db,llm_response_q,split_result_q,llm_finished_event,split_finished_event)) #创建llm断句结果
asyncio.create_task(voice_call_tts_handler(ws,tts_info,split_result_q,split_finished_event,voice_call_end_event)) #返回tts音频结果
while not voice_call_end_event.is_set():
await asyncio.sleep(3)
await ws.close()
logger.debug("voice_call websocket 连接断开")
完整代码
最后贴一版完整代码
注:无法直接使用,仅提供思路
import webrtcvad
import base64
class VAD():
def __init__(self, vad_sensitivity=1, frame_duration=30, vad_buffer_size=7, min_act_time=1, RATE=16000,**kwargs):
self.RATE = RATE
self.vad = webrtcvad.Vad(vad_sensitivity)
self.vad_buffer_size = vad_buffer_size
self.vad_chunk_size = int(self.RATE * frame_duration / 1000)
self.min_act_time = min_act_time # 最小活动时间,单位秒
def is_speech(self,data):
byte_data = base64.b64decode(data)
return self.vad.is_speech(byte_data, self.RATE)
def get_session_content(session_id,redis,db):
session_content_str = ""
if redis.exists(session_id):
session_content_str = redis.get(session_id)
else:
session_db = db.query(Session).filter(Session.id == session_id).first()
if not session_db:
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail="Session not found")
session_content_str = session_db.content
return json.loads(session_content_str)
#解析大模型流式返回内容
def parseChunkDelta(chunk):
decoded_data = chunk.decode('utf-8')
parsed_data = json.loads(decoded_data[6:])
if 'delta' in parsed_data['choices'][0]:
delta_content = parsed_data['choices'][0]['delta']
return delta_content['content']
else:
return ""
#断句函数
def split_string_with_punctuation(current_sentence,text,is_first):
result = []
for char in text:
current_sentence += char
if is_first and char in ',.?!,。?!':
result.append(current_sentence)
current_sentence = ''
is_first = False
elif char in '。?!':
result.append(current_sentence)
current_sentence = ''
return result, current_sentence, is_first
#vad预处理
def vad_preprocess(audio):
if len(audio)<1280:
return ('A'*1280)
return audio[:1280],audio[1280:]
#音频数据生产函数
async def voice_call_audio_producer(ws,audio_q,future,input_finished_event):
logger.debug("音频数据生产函数启动")
is_future_done = False
audio_data = ""
try:
while not input_finished_event.is_set():
voice_call_data_json = json.loads(await ws.receive_text())
if not is_future_done: #在第一次循环中读取session_id
future.set_result(voice_call_data_json['meta_info']['session_id'])
is_future_done = True
if voice_call_data_json["is_close"]:
input_finished_event.set()
break
else:
audio_data += voice_call_data_json["audio"]
while len(audio_data) > 1280:
vad_frame,audio_data = vad_preprocess(audio_data)
await audio_q.put(vad_frame) #将音频数据存入audio_q
except KeyError as ke:
logger.info(f"收到心跳包")
#音频数据消费函数
async def voice_call_audio_consumer(audio_q,asr_result_q,input_finished_event,asr_finished_event):
logger.debug("音频数据消费者函数启动")
vad = VAD()
current_message = ""
vad_count = 0
while not (input_finished_event.is_set() and audio_q.empty()):
audio_data = await audio_q.get()
if vad.is_speech(audio_data):
if vad_count > 0:
vad_count -= 1
asr_result = asr.streaming_recognize(audio_data)
current_message += ''.join(asr_result['text'])
else:
vad_count += 1
if vad_count >= 25: #连续25帧没有语音,则认为说完了
asr_result = asr.streaming_recognize(audio_data, is_end=True)
if current_message:
logger.debug(f"检测到静默,用户输入为:{current_message}")
await asr_result_q.put(current_message)
current_message = ""
vad_count = 0
asr_finished_event.set()
#asr结果消费以及llm返回生产函数
async def voice_call_llm_handler(session_id,llm_info,redis,db,asr_result_q,llm_response_q,asr_finished_event,llm_finished_event):
logger.debug("asr结果消费以及llm返回生产函数启动")
while not (asr_finished_event.is_set() and asr_result_q.empty()):
session_content = get_session_content(session_id,redis,db)
messages = json.loads(session_content["messages"])
current_message = await asr_result_q.get()
messages.append({'role': 'user', "content": current_message})
payload = json.dumps({
"model": llm_info["model"],
"stream": True,
"messages": messages,
"max_tokens":10000,
"temperature": llm_info["temperature"],
"top_p": llm_info["top_p"]
})
headers = {
'Authorization': f"Bearer {Config.MINIMAX_LLM.API_KEY}",
'Content-Type': 'application/json'
}
response = requests.request("POST", Config.MINIMAX_LLM.URL, headers=headers, data=payload, stream=True)
if response.status_code == 200:
for chunk in response.iter_lines():
if chunk:
chunk_data =parseChunkDelta(chunk)
llm_frame = {'message':chunk_data,'is_end':False}
await llm_response_q.put(llm_frame)
llm_frame = {'message':"",'is_end':True}
await llm_response_q.put(llm_frame)
llm_finished_event.set()
#llm结果返回函数
async def voice_call_llm_response_consumer(session_id,redis,db,llm_response_q,split_result_q,llm_finished_event,split_finished_event):
logger.debug("llm结果返回函数启动")
llm_response = ""
current_sentence = ""
is_first = True
while not (llm_finished_event.is_set() and llm_response_q.empty()):
llm_frame = await llm_response_q.get()
llm_response += llm_frame['message']
sentences,current_sentence,is_first = split_string_with_punctuation(current_sentence,llm_frame['message'],is_first)
for sentence in sentences:
await split_result_q.put(sentence)
if llm_frame['is_end']:
is_first = True
session_content = get_session_content(session_id,redis,db)
messages = json.loads(session_content["messages"])
messages.append({'role': 'assistant', "content": llm_response})
session_content["messages"] = json.dumps(messages,ensure_ascii=False) #更新对话
redis.set(session_id,json.dumps(session_content,ensure_ascii=False)) #更新session
logger.debug(f"llm返回结果: {llm_response}")
llm_response = ""
current_sentence = ""
split_finished_event.set()
#语音合成及返回函数
async def voice_call_tts_handler(ws,tts_info,split_result_q,split_finished_event,voice_call_end_event):
logger.debug("语音合成及返回函数启动")
while not (split_finished_event.is_set() and split_result_q.empty()):
sentence = await split_result_q.get()
sr,audio = tts.synthesize(sentence, tts_info["language"], tts_info["speaker_id"], tts_info["noise_scale"], tts_info["noise_scale_w"], tts_info["length_scale"], return_bytes=True)
text_response = {"type": "text", "code": 200, "msg": sentence}
await ws.send_bytes(audio) #返回音频二进制流数据
await ws.send_text(json.dumps(text_response, ensure_ascii=False)) #返回文本数据
logger.debug(f"websocket返回:{sentence}")
asyncio.sleep(0.5)
await ws.close()
voice_call_end_event.set()
async def voice_call_handler(ws, db, redis):
logger.debug("voice_call websocket 连接建立")
audio_q = asyncio.Queue() #音频队列
asr_result_q = asyncio.Queue() #语音识别结果队列
llm_response_q = asyncio.Queue() #大模型返回队列
split_result_q = asyncio.Queue() #断句结果队列
input_finished_event = asyncio.Event() #用户输入结束事件
asr_finished_event = asyncio.Event() #语音识别结束事件
llm_finished_event = asyncio.Event() #大模型结束事件
split_finished_event = asyncio.Event() #断句结束事件
voice_call_end_event = asyncio.Event() #语音电话终止事件
future = asyncio.Future() #用于获取传输的session_id
asyncio.create_task(voice_call_audio_producer(ws,audio_q,future,input_finished_event)) #创建音频数据生产者
asyncio.create_task(voice_call_audio_consumer(audio_q,asr_result_q,input_finished_event,asr_finished_event)) #创建音频数据消费者
#获取session内容
session_id = await future #获取session_id
tts_info = json.loads(get_session_content(session_id,redis,db)["tts_info"])
llm_info = json.loads(get_session_content(session_id,redis,db)["llm_info"])
asyncio.create_task(voice_call_llm_handler(session_id,llm_info,redis,db,asr_result_q,llm_response_q,asr_finished_event,llm_finished_event)) #创建llm处理者
asyncio.create_task(voice_call_llm_response_consumer(session_id,redis,db,llm_response_q,split_result_q,llm_finished_event,split_finished_event)) #创建llm断句结果
asyncio.create_task(voice_call_tts_handler(ws,tts_info,split_result_q,split_finished_event,voice_call_end_event)) #返回tts音频结果
while not voice_call_end_event.is_set():
await asyncio.sleep(3)
await ws.close()
logger.debug("voice_call websocket 连接断开")
更多推荐
所有评论(0)