
清华NLP开源RAG开箱即用框架,自动适配知识库无需纠结模型选型
通常需要兼顾测试制定、检索调优、模型调优等关键环节,繁琐的工作流程往往让人无从下手。,该框架革新了传统RAG系统的开发与配置方式,极大降低了学习成本和开发周期。UltraRAG 不仅具备满足专业用户需求的“单反相机”级精细化配置能力,同时也提供类似“卡片机”的一键式便捷操作,。更重要的是,相比复杂配置的Llamaindex等传统RAG框架,,有效避免在“模型选型”的反复纠结。同时,其又能为科研需求
RAG系统的搭建与优化是一项庞大且复杂的系统工程,通常需要兼顾测试制定、检索调优、模型调优等关键环节,繁琐的工作流程往往让人无从下手。
近日,针对以上痛点,清华大学THUNLP团队联合东北大学NEUIR、面壁智能及9#AISoft团队共同推出了UltraRAG框架,该框架革新了传统RAG系统的开发与配置方式,极大降低了学习成本和开发周期。
UltraRAG 不仅具备满足专业用户需求的“单反相机”级精细化配置能力,同时也提供类似“卡片机”的一键式便捷操作,让RAG系统的构建变得极简且高效。
更重要的是,相比复杂配置的Llamaindex等传统RAG框架,UltraRAG更加关注将模型适配到用户提供的知识库,有效避免在“模型选型”的反复纠结。
同时,其模块化设计又能为科研需求快速赋能,帮助研究者在多种场景下自由组合、快速迭代。通过UltraRAG,用户可以轻松完成从数据到模型的全流程管理。
一同发布的还有一系列 RAG 技术全家桶,其中,RAG-DDR、VisRAG 刚刚被ICLR收录,MiniCPM-Embedding已有30余万次下载量。
零代码编程WebUI支持,一键式系统化数据构建
UltraRAG以其极简的WebUI作为核心优势之一,即便是无编程经验的用户,也能轻松完成模型的构建、训练与评测。
无论是快速开展实验,还是进行个性化定制,UltraRAG均能提供直观且高效的支持。该框架集成了多种预设工作流,用户可根据具体需求灵活选择最优路径,无需编写繁琐代码,即可完成从数据处理到模型优化的全流程操作。
以下是操作演示:
UltraRAG以自研的KBAlign、DDR等方法为核心,提供 “一键式”数据构建,结合检索与生成模型的多样化微调策略,助力性能全面优化。
在数据构造方面,UltraRAG覆盖从检索模型到生成模型的全流程数据构建方案,支持基于用户导入的知识库自动生成训练数据,显著提升场景问答的效果与适配效率。
在模型微调方面,UltraRAG提供了完备的训练脚本,支持Embedding模型训练及LLM的DPO/SFT微调,帮助用户基于数据构建更强大、更精准的模型。
UltraRAG以自研的UltraRAG-Eval方法为核心,融合针对有效与关键信息的多阶段评估策略,显著提升模型评估的稳健性,覆盖从检索模型到生成模型的多维评估指标,支持从整体到各环节的全面评估,确保模型各项性能指标在实际应用中得到充分验证。
通过关键信息点锚定,UltraRAG有效增强评估的稳定性与可靠性,同时提供精准反馈,助力开发者持续优化模型与方法,进一步提升系统的稳健性与实用性。
UltraRAG内置THUNLP-RAG组自研方法及其他前沿RAG技术,支持整个模块化的持续探索与研发。UltraRAG不仅是一个技术框架,更是科研人员与开发者的得力助手,助力用户在多种任务场景中高效寻优。
UltraRAG内置探索技术系列
UltraRAG系列引入多项创新技术,优化了检索增强生成中的知识适配、任务适应和数据处理,提升了系统的智能性和高效性。
-
UltraRAG-KBAlign:提升大语言模型自适应知识库的能力,优化知识检索与推理过程。2.4B模型通过自标注达到GPT-4o的标注性能,并在多个实验中超越GPT-4o本身。
-
UltraRAG-Embedding:出色的中英文检索能力,支持长文本与稀疏检索,通行评测榜单MTEB-Retrieval上性能评分超过 BGE-M3 10%。
-
UltraRAG-Vis:提出了纯视觉的RAG Pipeline,通过引入VLMs对文档进行编码,避免了文档解析造成的信息丢失,相比传统Text RAG Pipeline,部分任务在端到端性能上提升25-39%。
-
UltraRAG-Adaptive-Note:通过动态记忆管理和信息收集,提升复杂问答任务中的解答质量。在GPT-3.5-turbo、Llama3-8B、Qwen2-7B等多个前沿模型上实验表明,自适应地动态记忆管理和信息收集策略相较基础检索增强生成模型实现3%~13.9%的性能提升,并且尤其擅长处理具有复杂信息检索需求的问题。
-
UltraRAG-DDR:基于可微调数据奖励(DDR)优化检索增强生成,提升任务特定场景的系统性能。在MiniCPM-2.4B、Llama3-8B等多个前沿模型上实验表明,DDR优化策略相较原始检索增强生成模型可实现7%以上性能提升。
-
UltraRAG-Eval:针对RAG场景设计的高效评测方案。通过少量种子文档,快速自动生成专业领域的RAG评测数据,并提供稳健的模型驱动评测指标与方法。
UltraRAG各方法在国内外AI社区中享有一定的影响力和知名度,部分模型拥有30余万次下载量。
Github地址:
https://github.com/OpenBMB/UltraRAG
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
更多推荐
所有评论(0)