
EI级 | Matlab实现TCN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测 注释清楚,干货满满,直接运行
在时间序列预测领域,TCN-LSTM-Multihead-Attention模型正变得越来越流行。这个模型结合了三种不同的神经网络架构,分别是TCN(Temporal Convolutional Network)、LSTM(Long Short-Term Memory)和多头注意力机制(Multihead Attention)。这种结合使得模型能够更好地捕捉时间序列数据中的复杂关系,从而提高预测的
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在时间序列预测领域,TCN-LSTM-Multihead-Attention模型正变得越来越流行。这个模型结合了三种不同的神经网络架构,分别是TCN(Temporal Convolutional Network)、LSTM(Long Short-Term Memory)和多头注意力机制(Multihead Attention)。这种结合使得模型能够更好地捕捉时间序列数据中的复杂关系,从而提高预测的准确性和稳定性。
首先,让我们来看一下TCN。TCN是一种基于卷积神经网络的模型,它能够有效地捕捉时间序列数据中的局部模式和长期依赖关系。相比于传统的RNN(循环神经网络)和LSTM,TCN具有更短的训练时间和更好的并行性,同时也能够更好地处理长期依赖关系。
接下来是LSTM,它是一种专门用于处理时间序列数据的循环神经网络。LSTM通过自己的记忆单元和门控机制,能够更好地捕捉时间序列数据中的长期依赖关系,从而提高预测的准确性。
最后是多头注意力机制,这是一种用于处理序列数据的注意力机制的变种。它能够同时关注序列数据中的多个部分,从而更好地捕捉序列数据中的重要信息。结合多头注意力机制的TCN-LSTM模型能够更全面地捕捉时间序列数据中的复杂关系,从而提高预测的准确性和稳定性。
综合以上三种神经网络架构,TCN-LSTM-Multihead-Attention模型在多变量时间序列预测任务中表现出了很好的性能。它能够更好地捕捉时间序列数据中的长期依赖关系和复杂关系,从而提高预测的准确性和稳定性。因此,这个模型在金融、气象、交通等领域的时间序列预测任务中具有很大的应用前景。
总的来说,TCN-LSTM-Multihead-Attention模型是一种非常有效的多变量时间序列预测模型。它结合了三种不同的神经网络架构,能够更全面地捕捉时间序列数据中的复杂关系,从而提高预测的准确性
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
本程序参考以下中文EI期刊,程序注释清晰,干货满满。
[1] 胡艳霞,王成,李弼程,et al.基于多头注意力机制Tree-LSTM的句子语义相似度计算[J].中文信息学报, 2020, 34(3):11.DOI:CNKI:SUN:MESS.0.2020-03-004.
[2] 王军,高梓勋,单春意.基于TCN-Attention模型的多变量黄河径流量预测[J].人民黄河, 2022, 44(11):6.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
更多推荐
所有评论(0)