【LLM大模型】LLAMA3.1 8B 本地部署并配合Obsidian建立本地AI知识管理系统
目前,LLAMA3.1模型分为8B、70B、405B三个版本,其中70B和405B对于显存的要求均已超过了一般家用电脑的配置(或者换个说法,用一张4090也是带不起来的),所以运行8B即可。LLAMA3.1 8B的性能约相当于ChatGPT3.5。
目前,LLAMA3.1模型分为8B、70B、405B三个版本,其中70B和405B对于显存的要求均已超过了一般家用电脑的配置(或者换个说法,用一张4090也是带不起来的),所以运行8B即可。LLAMA3.1 8B的性能约相当于ChatGPT3.5。
经过我的测试4080、2080、intel ultra 9 185H(无独立显卡,其能力约相当于1060)都是可以带得动8B模型的,当然显卡越好,响应的速度越快。
1、安装Ollama
Ollama是专门为本地化运行大模型设计的软件,可以简便运行很多开源大模型
去官网下载Ollama软件:
代码语言:txt
https://ollama.com/
2、设置环境变量
可以直接在CMD中通过set命令设置
代码语言:txt
set OLLAMA_HOST=127.0.0.1
set OLLAMA_MODELS=d:\ollama\models
set OLLAMA_ORIGINS=app://obsidian.md*
其中,OLLAMA_HOST可以设置为127.0.0.1(本机) 或者0.0.0.0(任意)
OLLAMA_MODELS用于设置模型位置,如果设置了这个环境变量的话,则下载回来的模型会保存在后面设定的位置,如果没设置这个环境变量的话,则会默认保存在
代码语言:txt
C:\Users\你的用户名.ollama\models
OLLAMA_ORIGINS用于连接obsidian笔记
3、下载并运行模型
先下载一个用于上载笔记内容至Ollama的模型
代码语言:txt
ollama pull nomic-embed-text
直接在CMD中使用命令进行下载
代码语言:txt
ollama run llama3.1:8b
第一次运行的时候会自动下载训练好的模型文件,后续使用不会重复下载。
但是每次使用的时候都需要执行一次
代码语言:txt
ollama run llama3.1:8b
如果下载过程中出现提示网络错误,则可以尝试使用特殊的上网方式或者去可下载的电脑上下载回来模型文件并拷贝到环境变量中设置的models文件位置中使用
4、OBSIDIAN安装
去其官网下载安装即可,无特殊要求
代码语言:txt
https://obsidian.md/
5、安装copilot插件
在Obisdian的设置——第三方插件——关闭安全模式——社区插件市场——浏览——搜索输入copilot,选择作者是logan yang的那个,然后安装——启用,即可
随后还是在第三方插件中,点开copilot的设置。
主要有以下几处
-
在最顶端 Default Model——选择OLLAMA(LOCAL)
-
在QA settings里面 Embedding Models——选择ollama-nomic-embed-text
-
在接近最下面的地方 Ollama model——手工输入 llama3.1:8B
最后去最上方点 save and reload
6、使用
在obsidian左侧点击copilot小图标,右侧出现窗口,就可以使用copilot了。
可以在三种模式中切换,chat就是一般的对话模式,long note QA是针对单篇笔记的问答模式,vault QA是针对整个笔记库的问答模式。
使用QA模式时,应先点击一下右边的拼图形状的图标,载入当前笔记,后针对性提问,美中不足是它在针对笔记的问题回答时只能使用英文回答。
如何系统的去学习AI大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
全套 《LLM大模型入门+进阶学习资源包》↓↓↓ 获取~
更多推荐
所有评论(0)