常见的损失函数
1、损失函数的意义机器学习中的监督学习本质上是给定一系列训练样本 ,尝试学习 的映射关系,使得给定一个 ,即便这个 不在训练样本中,也能够得到尽量接近真实 的输出 。而损失函数(Loss Function)则是这个过程中关键的一个组成部分,用来衡量模型的输出 与真实的 之间的差距,给模型的优化指明方向。2、回归问题的损失函数2.1 均方差损失均方差 Mean Squared Error (MSE)
1、损失函数的意义
机器学习中的监督学习本质上是给定一系列训练样本 ,尝试学习 的映射关系,使得给定一个 ,即便这个 不在训练样本中,也能够得到尽量接近真实 的输出 。而损失函数(Loss Function)则是这个过程中关键的一个组成部分,用来衡量模型的输出 与真实的 之间的差距,给模型的优化指明方向。
2、回归问题的损失函数
2.1 均方差损失
均方差 Mean Squared Error (MSE) 损失是机器学习、深度学习回归任务中最常用的一种损失函数,也称为 L2 Loss。
从直觉上理解均方差损失,这个损失函数的最小值为 0(当预测等于真实值时),最大值为无穷大。下图是对于真实值 ,不同的预测值 的均方差损失的变化图。横轴是不同的预测值,纵轴是均方差损失,可以看到随着预测与真实值绝对误差 的增加,均方差损失呈二次方地增加。
在模型输出与真实值的误差服从高斯分布的假设下,最小化均方差损失函数与极大似然估计本质上是一致的,因此在这个假设能被满足的场景中(比如回归),均方差损失是一个很好的损失函数选择;当这个假设没能被满足的场景中(比如分类),均方差损失不是一个好的选择 。
2.2 平方绝对误差损失
这个损失函数进行可视化如下图,MAE 损失的最小值为 0(当预测等于真实值时),最大值为无穷大。可以看到随着预测与真实值绝对误差 的增加,MAE 损失呈线性增长.
MSE 假设了误差服从高斯分布,MAE 假设了误差服从拉普拉斯分布。拉普拉斯分布本身对于 outlier 更加 robust。
2.3 Huber Loss (Smooth L1 Loss)
Huber Loss 则是一种将 MSE 与 MAE 结合起来,取两者优点的损失函数,也被称作 Smooth Mean Absolute Error Loss 。其原理很简单,就是在误差接近 0 时使用 MSE,误差较大时使用 MAE.
Huber Loss 结合了 MSE 和 MAE 损失,在误差接近 0 时使用 MSE,使损失函数可导并且梯度更加稳定;在误差较大时使用 MAE 可以降低 outlier 的影响,使训练对 outlier 更加健壮。缺点是需要额外地设置一个 超参数.
【不足】 Smooth L1 Loss在计算目标检测的 bbox loss时,都是独立的求出4个点的 loss,然后相加得到最终的 bbox loss。这种做法的默认4个点是相互独立的,与实际不符。举个例子,当(x, y)为右下角时,w h其实只能取0
2.4 分位数损失
分位数回归 Quantile Regression 是一类在实际应用中非常有用的回归算法,通常的回归算法是拟合目标值的期望或者中位数,而分位数回归可以通过给定不同的分位点,拟合目标值的不同分位数。例如我们可以分别拟合出多个分位点,得到一个置信区间,如下图所示(图片来自笔者的一个分位数回归代码 demo Quantile Regression Demo)
下图是取不同的分位点 0.2、0.5、0.6 得到的三个不同的分位损失函数的可视化,可以看到 0.2 和 0.6 在高估和低估两种情况下损失是不同的,而 0.5 实际上就是 MAE。
2.5 IoU Loss
【动机】 针对smooth L1没有考虑box四个坐标之间相关性的缺点,
【分析】 通过4个坐标点独立回归Building boxes的缺点:
检测评价的方式是使用IoU,而实际回归坐标框的时候是使用4个坐标点,如下图所示,是不等价的;L1或者L2 Loss相同的框,其IoU 不是唯一的;
通过4个点回归坐标框的方式是假设4个坐标点是相互独立的,没有考虑其相关性,实际4个坐标点具有一定的相关性;
基于L1和L2的距离的loss对于尺度不具有不变性;
实际使用中简化为:
【不足】
当预测框和目标框不相交,即 IoU(bbox1, bbox2)=0 时,不能反映两个框距离的远近,此时损失函数不可导,IoU Loss 无法优化两个框不相交的情况。
假设预测框和目标框的大小都确定,只要两个框的相交值是确定的,其 IoU 值是相同时,IoU 值不能反映两个框是如何相交的。EIoU Loss(2021)
论文地址:https://arxiv.org/pdf/2101.08158.pdf
【动机】 解决CIoU的定义中不足
【亮点】 引入了解决样本不平衡问题的Focal Loss思想
3 分类问题的损失函数
3.1 交叉熵损失函数
上文介绍的几种损失函数都是适用于回归问题损失函数,对于分类问题,最常用的损失函数是交叉熵损失函数 Cross Entropy Loss。
下图是对二分类的交叉熵损失函数的可视化,蓝线是目标值为 0 时输出不同输出的损失,黄线是目标值为 1 时的损失。可以看到约接近目标值损失越小,随着误差变差,损失呈指数增长。
多分类
在多分类的任务中,交叉熵损失函数的推导思路和二分类是一样的,变化的地方是真实值 现在是一个 One-hot 向量,同时模型输出的压缩由原来的 Sigmoid 函数换成 Softmax 函数。Softmax 函数将每个维度的输出范围都限定在 之间,同时所有维度的输出和为 1,用于表示一个概率分布。
3.2 合页损失(Hinge Loss)
合页损失 Hinge Loss 是另外一种二分类损失函数,适用于 maximum-margin 的分类,支持向量机 Support Vector Machine (SVM) 模型的损失函数本质上就是 Hinge Loss + L2 正则化。
下图是 为正类, 即 时,不同输出的合页损失示意图
更多推荐
所有评论(0)